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A DEFICIENCY IN CURRENT FINITE ELEMENTS FOR
THIN SHELL APPLICATIONSt

A. J. MORRIS

Structures Department, Royal Aircraft Establishment, Farnborough, Hampshire

Abstract-The paper investigates the accuracy of displacement finite elements developed for thin shell applica­
tions. A careful choice of shell theory is made and variational equations are used to obtain element equations.
The results show that currently available finite elements use incomplete approximate forms for their displacement
fields. The elements have been constructed so that either rigid body or "sensitive" solution modes are adequately
represented but not both.

1. INTRODUCTION

THE finite element method is a piecewise application of the Rayleigh-Ritz technique and
has been employed with great success in the numerical solution of a wide range of problems
in continuum mechanics. At the present time this method is being extended to find solutions
for loaded shells of arbitrary shape, and a large number of papers have already appeared
on this subject [1]. Despite all this work no really systematic attempt has been made to
examine the nature of the problem and kind of errors which may occur in dealing with
shells in a piecewise manner.

The purpose of the present paper is to explore the possibility of obtaining accurate
numerical solutions to general shell problems by using a finite element displacement
analysis. In performing such an analysis the first critical decision which needs to be made
lies in the selection of a set of constitutive equations for the underlying shell theory.
According to Truesdell and Toupin [2] in a general field theory the set of constitutive
equations must satisfy certain mathematical principles. With particular reference to shell
theory Gol'denveizer [3] and Naghdi [4] have noted that from amongst these general
principles there are three which have a particular significance. These three are:

(a) Consistency. Any set of constitutive equations should be consistent with the prin­
ciples of energy and equilibrium. As Gol'denveizer points out this implies the existence
of a reciprocity theorem analogous to Bettis' principle.

(b) Rigid displacement invariance. The equations should remain invariant under rigid
body displacements. This does not mean that the strain measures necessarily produce
zero strain for this kind of motion, but that the constitutive equations give rise to zero
strain energy.

(c) Coordinate invariance. The equations should be stated by a rule which holds
equally well in all coordinate systems. This condition can' easily be satisfied if the appro­
priate equations are stated in tensorial form or by the aid of direct notations not employing
coordinates at all.

Although these conditions are easily stated they impose severe limitations on any
proposed new shell theory and are not necessarily easy to satisfy. In view of this, when
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finite element applications are considered, the best course would seem to lie in choosing
a theory which already satisfies these conditions rather than construct a new one. This is
the policy which is adopted in the present investigation where the modified Love-Kirchhoff
theory proposed by Naghdi [5J is employed. It may be noted here that many finite shell
elements used in the past relied on the theories of Love or Novozhilov [6J, neither of which
gives a satisfactory compliance with all the principles (a-e).

It may be argued that the degree of rigour created by the requirement that all the prin­
ciples (a-e) are applied is unnecessary in view of the fact that numerical methods usually
give approximate answers. Thus Zienkiewicz [IJ and his co-workers, for example, have
developed a shell element by using the isoparametric element without the imposition that
the shell theory should conform to the Love-Kirchhoff hypothesis. In order to recover an
approximate thin shell theory when the thickness is small certain ad hoc variations in the
integration order are made. It is extremely difficult to relate these modifications to the
requirements (a-e) and to the Koiter "consistency" requirements [7]. In view of this it
would be difficult to maintain confidence in this type of element, for thin shell applications,
in the absence of adequate confirmatory closed form or experimental results. However, in
the present context, the principles are rigorously imposed in order to be sure that any
errors which do arise come from the numerical approximation technique and not from an
unsuitable shell theory.

In considering the adequacy or otherwise of displacement shell elements there are
three important criteria to be considered. First of all the solution technique should be
capable of dealing with the kind of "sensitive" solutions listed by Morley [7J some of which
have caused problems in the past development of shell theory, an example of this class of
problem is that of a slit cylinder under torsional loading. In this same context, the approxi­
mate displacement field must define a satisfactory description of the rigid-body displace­
ment modes. Secondly, an element is required which fully satisfies the conditions of inter­
element compatibility. For certain problems a fourth criterion requiring that the element
must be suitable for deep shell applications would need to be imposed. Thus for general
applications we have four conditions which must be satisfied by the finite element itself
in addition to the three (a-e) imposed on the underlying shell theory.

One of the earliest and simplest displacement finite element systems to be developed
for use in solving shell problems considered the shell as an assembly of flat elements [1,8].
Each element has an approximate displacement field which can give rise to both membrane
and couple stress resultants and the element is a natural extension of the studies done on
plate bending elements. Apart from the advantage of simplicity the flat element can handle
rigid-body displacements without incurring any errors and can be made fully compatible.
However, in practice there is always a coupling action between the bending and membrane
stress fields and for certain problems this is unacceptable. If, for example, the element was
used to analyse the torsion of a slit cylinder it is difficult to see how it could achieve the
correct answer which requires that all the stresses be negligible everywhere with the
exception of the twisting moment. This apparent inability to handle certain shell problems
imposes a limitation on the general application of flat elements since it would require
knowing in advance whether any particular solutions contained dominant components
from these missing solutions.

Another simple approach is to consider the shell as an assembly of elements each of
which is a portion of a shallow shell [9]. Once again the elements can be made fully con­
forming in the displacement field and in principle can give a satisfactory description to
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the rigid-body modes but not to "sensitive" solutions. In addition there are two further
objections. First of all adjacent elements which are portions of different parabolic surfaces
will not match properly and will produce discontinuities in the shell surface. Secondly if
a sequence of shallow shell elements are used to approximate a deep shell then the net
result is equivalent to using shallow shell theory for the solution of deep shell problems.

A further possibility is to employ curved finite elements with an appropriate general
shell theory and to write the equations in terms of a flat two-dimensional Euclidean
reference surface and a variable representing the perpendicular distance of the curved
surface from the flat one [lOJ. This kind of transformation is easily performed and the
appropriate tensorial equations may be found in Green and Zerna [11]. By using a reference
plane it is possible to gain all the advantages ofa flat element system but without sacrificing
the true shape. Thus the compatibility and rigid-body criteria are satisfied as they are with
the flat element but, unlike the flat element, a preliminary inspection reveals no artificial
coupling between the couple and membrane stress resultants. However, because we are
mapping between a curved and a flat surface the process which changes the transcendental
rigid-body displacements into polynomial functions also transforms the polynomial
"sensitive" solutions into transcendental form. Thus, as we shall see later, the same situation
exists for this element as with an element embedded in the shell surface, but there are other
difficulties in the present case. Let us consider the case where the corner nodes for the
elements lie on the curved surface and the reference surface for each element is formed by
passing a plane through each node (the nodes must be co-planar). If the shell being analysed
has a non-zero Gaussian curvature, Fig. l(a), it is immediately clear that projecting normally
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FIG. l(a). Discontinuities caused by element refd'ence surface.
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FIG. l(b). CUSp at junction of reference and shell surfaces.

from each reference surface does not cover the shell surface. It is assumed by Visser [12J
that the existence of this kind of void does not give rise to any real difficulties. However, if
a large problem is being solved and certain regions need to be covered by a few elements
such voids could well be large. Further it is not clear what kind ofeffect these voids will have
on "sensitive" solutions since the kind of coupling experienced by flat elements will also
exist in this particular situation. If it is decided to circumvent this difficulty by having just
one reference plane, Fig. 1b, problems will still arise if the shell and the reference surface
intersect.

An alternative element which falls partially into the above category is that of Argyris
and Scharpf [13]. However, this element has been discussed by Dupuis [14J to which
reference should be made for an assessment.

In view of all these doubts it would seem that the only suitable displacement element
for deep shells is one embedded in the curved shell surface and described in terms of surface
coordinates. Such an element can be easily constructed to satisfy inter-element conformity
but then runs into rigid-body displacement errors. The most usual procedure with such an
element is to describe the tangential and normal displacement fields by polynomial func­
tions of the coordinates. Unfortunately for curved surfaces rigid-body movements are
properly expressed as transcendental functions of the surface coordinates as opposed to
polynomials. It has been suggested by Cantin and Clough [15J that a mixed polynomial­
transcendental form should be taken as the approximate displacement field in order that
rigid-body modes be explicitly represented, but this removes some of the "sensitive"
solution modes and would give rise to errors if these components appeared in any problem.
If we accept that polynomial approximation is the only satisfactory answer we may turn
to Morley's paper [7J where it is noted that if the tangential displacements are limited to
quadratic expressions then, in order to retain the same kind of accuracy associated with
first approximation shell theory, it is generally necessary that the linear dimensions of the
finite element be of the same order of magnitude as the shell thickness in addition to a
requirement that the rigid-body movement is accommodatingly small. It is further noted
[7J that with quartic expressions for these displacement components the minimum linear
dimension increases to J(R x the thickness), where R is the current minimum radius of
curvature. Thus simply increasing the order of the approximating polynomials does not
remove rigid-body errors but reduces their influence. These remarks of Morley play a
central role in the present paper where two elements are presented, each employing an
approximating polynomial for the components of the displacement field, and each is used
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(2.1)

to solve "sensitive" problems. Since the work forms an investigation into accuracy, the
elements are rectangular but they are constructed so that their edges need not lie along
lines of principle curvatures and they can treat shells with continuously varying radii.

2. THE ELEMENTS

The elements developed for the present investigation are constructed so that they are
capable of analysing a doubly curved shell with continuously varying radii. However, the
analytiC "sensitive" solutions available for comparison with finite element results are
obtained for circular cylindrical shells. A considerable simplification in the algebra is
achieved if the equations for the finite elements are written in terms of a circular cylindrical
configuration as opposed to a general shape. This simplification is adopted below where the
general equations actually employed by the element are not presented but only the form
that they take when specialized to the circular cylindrical case. We may note, in passing,
that circular cylindrical shells exhibit all the properties of a more general shape and the
results obtained below are equally valid for all types of surfaces.

In the theory of Naghdi [5] the symmetric components of median strain and curvature
change for a circular cylindrical shell are expressed in terms of the displacement components
by

1 av w
Y(66) = Ii 00 +Ii'

au
Y(xx) = ax'

1{av 1 au}
Y(x6) = Y(6x) ="2 ax+ Ii 00 '

1 a2w 2 av w
)e66 = - R2 002+R2 00 +R 2

A a2w
Xxx = - ax2

A A 1 a2 w 1 av
xx6 = x6x = -Ii axao +Ii ax'

The shell geometry and sign conventions for displacements, loads, stress resultants and
stress couples are shown in Fig. 2. The symmetric pseudo-stress resultants and stress
couples which correspond to (2.1) are given by:

"" M 66
1'1 66 = N 66 - R ,

"" "" M X6
1'1 x6 = 1'1 6x = N X6 - R = N 6x ,

(2.2)

M(xx) = M xx '

M(x6) = t{Mx6 +M6x },
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FIG. 2. Notation for shell theory.

and the constitutive equations become,

(2.3)

~ Eh
N 88 = (1 _ v2) (Y(88) + vY(xx»)

~ Eh
N xx = (1- v2)(Y(XX) +VY(86»)

~ ~ Eh
N x8 = N 8x = 1+ V Y(x8)

Eh
3

(A A)
M(88) = 12(I-v2) x e8 +VXxx

Eh
3

(A A)
M(xx) = 12(1- v2) Xxx + VX68

Eh3

M(x8) = M(8x) = 12(1 + v) "xe

where h is the shell thickness, E Young's modulus and v Poisson's ratio.
Once a particular shell theory has been selected the application of the finite element

method becomes one of obtaining an appropriate set of linear simultaneous equations.
The selection ofthese equations can be made in an elegant and rigorous manner by em­
ploying the well tried variational principles of elasticity theory [16-18]. Thus the potential



A deficiency in current finite elements for thin shell applications 337

energy theorem may be applied to a single discrete element in a collection of connected
finite elements on the assumption that we are dealing with a displacement element which
fully satisfies interelement compatibility and that the strain field corresponds to the dis­
placement field. If it is specialized to the case of a cylindrical shell with the Naghdi sym­
metric terms the theorem states that the variation of a functional J is identically zero where

(2.4)

In equation (2.4) the column vectors {y} and {x} consist of the strain and curvature change
measures given in (2.1), the remaining terms are given by

/1 0 Ov)
fA} = ~2(0 (I-v)

(I-v)
vOl i

Un = U cos ct. + v sin ct.

Us = - U sin ct. + v cos ct.

ow
cPn = - on + (us cos ct. + Un sin ct.) sin ct.

where ct. is the angle between the normal and the generator and with Po, Px and p external
applied surface loads. Any applied concentrated loads in equation (2.4) are assumed to be
included in the shear stress resultant V:. The set of approximate equations for the entire
shell are then obtained by taking the variation of J with respect to the displacements,
v, U and w for all the elements making up the shell. Before leaving (2.4) it may be noted
that by keeping the non-symmetric resultants and couples in the contour integral we are
able to apply external edge loads to the finite element system in a straightforward manner.

Let tiS assume that a shell surface is divided up into a series of rectangular domains
by means of a set of orthogonal curvilinear coordinates and that each of these domains
constitutes a displacement finite element for which we require a stiffness matrix correspond­
ing to the modified Naghdi theory given above. It is further assumed that on each of these
domains an approximate displacement field can be generated by using only the displace­
ments, and their derivatives, at each corner of the rectangle together with the appropriate
Hermite polynomial.

Within the finite element discipline the use of the Hermite polynomials for generating
approximate fields is not new and an adequate discussion for this type of application can
be found in an expository paper by Bogner, Fox and Schmit [19]. In the specific case where
the finite element technique has been used to analyse shell problems this method ofapproxi­
mation has been exploited by Key and Beisinger [20].

The first rigorous definition of a bivariate generalization of the Hermite interpolation
formula seems to have been given by Alhlin [21J who shows that a suitable approximate
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form for a function f(x, y) is given by
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n If n Ii D
.f~(x, y) = I I hr(x)gi(y)f(xr , yJ + I I hr(X)gi(y);;-/(xr , y;)

i=lr=1 i=lr=l C}

where

hlx) = [1 2J;(x)(x-xr)][lr(xW

nr(x) = (x xr)[l.(xW

gj(Y) = [1 2m;(y)(y- Yi)][mly)] 2

gj(Y) = (y- Yi)[mi(y)F

and Ir and mi are the Lagrangian coefficients,

Ir(x) = ).(x)/(x - xr)).'(xr )

mi(x) = tl(y)/(y- yJ;l(Yi)

with
n

2(x) = n (x - xi)
i 1

n

tl(y) = n(y-yJ
i 1

The expression (2.5) defines the approximate form fm(.x, y) in terms of known values of the
function f(x, y) and certain of its derivatives at a given set of mesh points x" Yi(i = 1 ... n,
r 1... n). It should be noticed that this type of approximation exactly represents func­
tions of the form

k

fm(x, y) = I akxPyP

i 1
p ~ 3

where k is any positive integer and the ak's are a set of constants.
Returning to the finite element, there are three components of the displacement field

to be considered, the "in-plane" displacements v, u and the displacement normal to the
shell surface w. In the present analysis two kinds of elements are employed and the approxi­
mation chosen for one is that v, u should be first order interpolation polynomials and w
second order giving a 24 x 24 stiffness matrix for each element. The second element which
has a 48 x 48 stiffness matrix uses the same second order interpolation polynomial for all
the displacement components.

Considering the element as a domain with orthogonal sides we may prescribe values of
the variables at the corners (nodes) of the region and construct approximating Hermitian
interpolation functions. These approximate forms are then substituted into the functional
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(2.4) and the appropriate matrix equations are obtained by taking the variation of J for
each of the prescribed values in turn.

3. PRESENTATION AND DISCUSSION OF RESULTS

The equations used for the present analysis are such that the elements can be used for
shells with continuously varying radii. If they are specialized to the case of a cylindrical
shell with the element edges coincidental with the principle curvatures it is clear that the
(48 x 48) stiffness matrix is simply that used by Bogner, Fox and Schmitt [22]. The only
difference being that the present element uses numerical integration whilst Bogner and his
associates employ an analytic form. Using the examples in [22J the results obtained by
the present (48 x 48) element using sixteen integration points are identical with those of
Bogner, Fox and Schmitt. This identity indicates that the potential energy of the two
systems is the same and does not imply that the constitutive equations actually used for
stress calculations are the same. In fact, Bogner et al. do not calculate any stress resultants
or couples and do not present a set of constitutive equations. In the course of the following
sections a comparison of certain stress components is made which necessitates the use of
an adequate set of constitutive equations. It is precisely this requirement, in conjunction
with the mathematical principles laid down in the introduction, which led to the selection
of the Naghdi theory.

In the case of the (24 x 24) element there is no equivalent element availabl€ for direct
comparison and in this case element integrity is demonstrated with the aid of two small
examples. These are shown in Fig. 3 and consist of a square plate with encastre edges under

L
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~--=-L__~

WA.LL THICKNESS h
L
P.

R = 20h

FIG. 3. Plate and shell tests for element integrity.
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a central concentrated load and a circular cylindrical shell with encastre ends under
uniform pressure. The accuracies achieved by the element are shown in Table I where
the column giving the number of elements indicates how many elements were used to
cover the shaded areas in Fig. 3.

TABLE 1. PLATE AND CYLINDER TESTS FOR 24 DEGREES OF FREEDOM

ELEMENT

Number of 0, .
/0 error In w,

Problem Number of displacement compared with
elements unknowns classical value

Plate I 16 -7·1
Plate 4 36 -3·2
Cylinder I 24 +2·0
Cylinder 4 60 -0·5

Having illustrated that both elements work in a reasonably satisfactory manner
attention is now fixed on the "sensitive" examples discussed in the introduction. One such
problem, that of a slit circular cylinder under torsional loading, has played an important
role in highlighting the inherent defects in shell theories. In the present context it will be
used to show that the arguments deployed by Morley [7J, concerning the restrictions on
element size imposed by the approximating polynomial, are borne out in practice. The
problem has a very simple solution, the only significant contribution to the stress field
being a constant torsional couple and the displacement field has no component normal
to the surface but the other two components have a linear variation in the surface co­
ordinates. The method of attack is to solve the problem twice with each element, first with
the rigid-body modes secured so that no displacements normal to the shell are possible,
and secondly with the rigid-body modes secured so that normal displacements are per­
mitted. The problem is completely specified by traction boundary conditions and the
equilibrium set requires not only tangential edge forces but also loads normal to the
surface as shown in Fig. 5. Since both elements can accurately approximate a linear dis­
placement field it is anticipated that the problem with the first set of rigid-body conditions
will be accurately solved no matter how large the element becomes. In the second case
with the equilibrium set the normal displacement should give rise to no strain and is then
equivalent to a rigid-body motion. With this situation, according to Morley, inaccuracies
should appear with the present elements when the element dimensions exceed the shell
thickness for the (24x 24) case and when they exceed -J(R x thickness) for the (48 x 48)
element. We note at this point that elements using the flat two-dimensional reference
surface [IOJ will give rise to the above mentioned inaccuracies for both types of securing
condition for the reasons given in the introduction.

The problem is shown in Fig. 4 and for the numerical examination a strip is taken from
the circular cylindrical shell as indicated in the figure by the dotted lines. In the case of both
the (24 x 24) and (48 x 48) element this strip is approximated by a single element. A typical
single element is shown in Fig. 5 where the generalized loads F1 and F2 both balance the
externally applied torque and maintain the element in equilibrium. With the application
of the loads F2 the rigid-body modes may be secured by a method which allows a normal
displacement. The particular securing system used here is shown in Fig. 5. An alternative
method which does not permit normal displacements is achieved by putting w = 0 at all
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FIG. 4. Slit cylinder test.
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four nodes and u = v = 0 at one node (see Fig. 5 for definition of the displacements w, u
and v). The cylinder is assumed to have a thickness/radius (h/R) ratio of 0·01, the non­
dimensional element length (L/R) is constant at 0·05 and various values are chosen for the
angle ¢ which is subtended by the element. The torque parameter T/Gh 3 is constant at
1·638 x 10- 3 where T is the actual applied torque and G is the shear modulus. Poisson's
ratio for the material is taken as 0·3. With this loading condition the classical shell theory
solution has only one significant stress field component which is M x</> with a value of 500.
In first approximation shell theory any stress resultant (Nxx' NM' N x</» or couple (Mxx' M </></»

w=o
u:o

f
F"i><in9 o~ rigid
body r-nodll.6 ~. ~..,K,ng OT r'g'd

body rnodcz-s

FIG. 5. Loaded strip for slit cylinder test.
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TABLE 2(a}. TORSION OF A SLIT CYLINDER. ELEMENT WITH 24 DEGREES OF FREEDOM, RIGID-BODY MODES SECURED IN

THE MANNER SHOWN IN FIG. 4

Max[N xx ' Max[N".
1> rad. I) x 105 Ox 105 Mxq, Nq,q" N x¢] Mx¢ N¢¢,Nx¢J

for element classical for element for element classical classical

0·01 7·77 7-80 496-43 0[5J 500·00 0[5]
0·1 7·16 7-80 460·00 O[Mx¢] 500·00 0[5J
0-15 6·38 7-80 452·21 O[Mx¢~ 500-00 0[5J
0-20 5·57 7·80 448·37 O[Mx¢ 500-00 0[5J

critical 1> = hiR = 0-01

TABLE 2(b}. TORSION OF A SLIT CYLINDER. ELEMENT WITH 24 DEGREES OF FREEDOM, RIGID-BODY MODES SF£URED BY

SETTING w = 0 AT ALL FOUR NODES AND V = U = 0 AT ONE

Max[Nxx ' Max[Nxx '

<p rad_ I) X 105 Ox 105 Mx¢ N¢q"Nx¢J Mx¢ N¢¢, Nx¢]
for element classical for element for element classical classical

0-01 7·80 7·80 496-93 O[O·IJ 500-00 0[5J
0-1 7-80 7-80 496·93 0[0.1] 500·00 0[5J
1-571 7-80 7·80 496-93 0[0.1] 500-00 0[5J

critical1J = hlR = 0-01

is not considered as making a significant contribution to the stress field for this problem
providing it has a value less than or equal to 5 (Mx</>h/R). Therefore, we may say that a
finite element solution to the problem is correct if the value of M x</> is near to 500 and no
other couple or stress resultant has a value greater than 5_

The results obtained by securing the rigid-body modes in the manner shown in Fig_ 4
are displayed in Table 2a. They clearly show how inaccuracies in the predicted twist per
unit length eincrease as a function of the angle 4;. The only error free result is the case where
the element length in the 4; direction is equal to the shell thickness and, when this length
is increased to 10 x thickness, large errors appear. It is at this stage that the advantages,
indicated in the introduction, of using Naghdi's theory are seen. Because this theory has
a set of adequate constitutive equations we can be sure that the erroneous couple stresses
do not originate in the underlying shell theory but must be attributed to the use of an
approximation in the solution techniques. In Table 2(b) the same element is used but the
rigid-body modes are secured by the alternative configuration of setting the normal
displacement w = 0 at all four nodes and u = v = 0 at only one node. In this case there

TABLE 3(a}. TORSION OF A SLIT CYLINDER: ELEMENT WITH 48 DEGREES OF FREEDOM, RIGID-BODY MODES SECURED IN
THE MANNER SHOWN IN FIG. 4 .

Max[NxX' Max[NxX'
1> rad. Ox 105 Ox 105 Mx¢ N¢¢, Nx¢] Mx¢ N¢¢,N x¢]

for element classical for element for element classical classical

0-1 7·77 7·80 498·05 0[0-1] 500-00 0[5J
0-2 7-74 7·80 496·34 0[5] 500-00 0[5J
0-3 7·60 7·80 493-25 0[20] 500-00 0[5J

critical1J = Y"(Rh} = 0-1
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TABLE 3(b). TORSION OF A SLIT CYLINDER ELEMENT WITH 48 DEGREES OF FREEDOM, RIGID-BODY MODES SECURED BY

SETTING W = 0 AT ALL FOUR NODES AND V = U = 0 AT ONE

Max[N xx , Max[N.p.p,
</J rad. Ox 105 ex 105 Mx.p N .... ,Nx.p] Mx.p NxX' Nx.p]

for element classical for element for element classical classical

0·01 7-80 7-80 499·13 0[0·1] 500·00 0[5]
0·1 7.80 7·80 499·18 0[0·1] 500·00 0[5]
1·571 7·80 7·80 499·18 0[0·1] 500·00 0[5]

critical </J = J(Rh) = 0.1

are no rigid-body type motions and the only displacement field which required defining
is that appropriate to the analytic solution. The resulting linear displacement field is
adequately represented by the approximate field and the element gives satisfactory results
for any value of ¢.

The same problem is re-analysed with the aid of the (48 x 48) and the results are pre­
sented in Tables 3(a) and 3(b). Once again the pattern is repeated in a presence of a trigono­
metric field (Table 3a) the results are satisfactory for values of ¢ up to 0·2 rad. i.e. 20 x
thickness. In the presence of a linear displacement field [Table 3(b)] the results are also
satisfactory for any value of ¢.

The results obtained from the slit cylinder justify the arguments in the introduction,
namely that displacement elements embedded in the curved surface employing a poly­
nomial approximation scheme are accurate for "sensitive" problems but obey the "Morley
rules" for rigid-body motions.

In order to test that elements using the flat two-dimensional reference surface also
obey the same "rules", but in this case for errors arising in the sensitive solution modes,
the same slit cylinder problem was solved using the triangular elements of Argyris and
Scharpf [13]. This element uses a fifth order polynomial approximation to the displacement
field and appears in two forms. Sheba 6 has 63 degrees of freedom, eighteen at each vertex
and three at the midpoint of each side; Sheba 3 has 54 degrees of freedom with 18 at each
vertex. As before a strip was taken (Figs. 4 and 5) from the cylinder but in this case the
rectangular piece was approximated by joining two of the triangular elements. Although
this element is free from rigid-body difficulties the results of the tests that are given in
Table 4 were obtained with the rigid-body modes secured by putting w = 0 at the four
corners of the rectangle and u = v = 0 at one corner. Once again the numerical results
confirm the theoretical predictions in that significant stress resultants do not arise for
sufficiently small element size but do occur for large elements. Three results are given for
Sheba 3 and one for Sheba 6 and although the latter gives better results the same pattern
occurs with both.

A second problem in the same class of "sensitive" solutions is that of the pure bending
of a segment of a circular cylinder as shown in Fig. 6. In order to test this configuration
the segment is assumed to be encastre at A (Fig. 6) with the loads applied at B. This system
of supports gives rise to a trigonometric rigid-body type displacement field and it is to
be expected that the correct solution, M4>4> a constant with no other significant stress
contribution, will only be achieved for sufficiently small elements. The results given in
Table 5 show that the "rules" are once more obeyed. With a suitable rigid-body fixing
mode the correct solution of wand M4>4> both constant with all other stresses insignificant
is achieved.
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TABLE 4. TORSION Of A SLIT CYLINDER ANALYSED BY THE SHEBA ELEMENT
SHEBA 3

Max[NN' MaxlN~,p,

¢ rad. I! x 10 5 I! X 10' A1 xrP N x." Nx~J Alx N xx ' NX<l>J
for element classical for element for element classical classical

0·01 no no 500·00 O[O·IJ 500·00 0[5J
0·1 no 7·80 500·00 0[4J 500·00 0[5J
1·571 3·574 7·80 366·00 O[IOOOJ 500·00 0[5J

SHEBA 6

Range
1·571 no 497·89 0[55J 500·00 0[5J

502·38

FIG. 6. Pure bending of a segment of a cylindrical shell.

TABLE 5. PURE BENDING OF ASEGMENT ANAL YSED BY THE SHEBA ELEMENT. 24 DEGREES
OF fREEDOM ELEMENT

Max[Nxx '
¢ rad. MM N~~, N~.J M~~

for element for element classical

0·01 498·54 0[5J 500·00
0·1 509·08 O[M~~] 500·00

Max[Nxx ,
N~~, N~x]
classical

0[5]
0[5J

critical ¢ = hiR = 0·01

48 DEGREES OF FREEDOM ELEMENT

¢ rad.

0·1
0·2
0·3

M",,,,
for element

499·97
502·05
506·20

Max[N xx ,
N~~, N~xJ

for element

O[IJ
0[5]
0[9J

MN
classical

500·00
500·00
500·00

Max[NxX'
N",,,,,N~x]

classical

0[5]
0[5]
0[5]

critical ¢ = J(hR) = 0·1
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In the previous sections it is shown how current displacement thin shell elements are
deficient in their displacement field representation. Either they can give an exact representa­
tion to the polynomial displacement fields occurring with "sensitive" solutions and are
deficient in the trigonometric terms required for rigid-body representation. Or a trigono­
metric approximation scheme is employed that exactly represents the rigid-body fields but
is deficient in "sensitive" solution components. The only exception to this being elements
employing the flat reference plane where the argument must be inverted. In reviewing the
elements currently available it can be seen that their proposers have made a choice and
have elected to represent one or the other of these displacement fields but not both.

In view of the importance of "sensitive" solutions, and their relevance in demonst1"ating
the completeness of a given approximation scheme for a displacement element, it would
seem prudent for future proposers orshell elements to demonstrate their capacity to deal
with these problems. If a conforming element was proposed which gave satisfactory results
for problems like the slit cylinder case with both methods of securing the rigid-body
modes it could then be used with confidence for any thin shell problem.
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University of Liege.
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AOCTpaKT-B pa60le lfccneAyeTclI TO'lHOCTh CMell.leHIIH KOHe'lHhIX :JneMeHTOB, pa3pa6oTaHHblx C l..lenhlO
nplfMeHeHlfJI K TOHKlfM 060nO'IKaM. npOll3BOAIITCII BHIIMaTenbHblH Bbl60p TeOplll-l o60nO'IeK. C l..lenhlO
nony'leHIIJI ypaBHeHIIH :JneMeHTal1cnonb3YIOTCII Bapllal..lllOHHhle ypaBHeHIIII. Pe3YJlbTaTbi YKa3hIBaIOT
'ITO 06menpIIHIIThle AocTynHble KOHe'lHble 3neMeHThl nplIMeHJIIOT HenonHble npH6nlllKeHHbie BhlpalKeHlI1I
AnJI noneHlfX uepeMemeHIIH. CTPOIITCII TaKlle lKe 3neMeHThI, '1To6bI 6blJlO B03MOlKHO yuoBneTBoplITenbHo
upeAcTaBIITh IInlf lKeCTKoe Teno Mnll TIIUbI "'1YBCTBIITenhHhlx" peweHIIH, HO He o6a.


